Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
Nat Chem ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561425

Radiotherapy-induced prodrug activation provides an ideal solution to reduce the systemic toxicity of chemotherapy in cancer therapy, but the scope of the radiation-activated protecting groups is limited. Here we present that the well-established photoinduced electron transfer chemistry may pave the way for developing versatile radiation-removable protecting groups. Using a functional reporter assay, N-alkyl-4-picolinium (NAP) was identified as a caging group that efficiently responds to radiation by releasing a client molecule. When evaluated in a competition experiment, the NAP moiety is more efficient than other radiation-removable protecting groups discovered so far. Leveraging this property, we developed a NAP-derived carbamate linker that releases fluorophores and toxins on radiation, which we incorporated into antibody-drug conjugates (ADCs). These designed ADCs were active in living cells and tumour-bearing mice, highlighting the potential to use such a radiation-removable protecting group for the development of next-generation ADCs with improved stability and therapeutic effects.

2.
J Hazard Mater ; 471: 134384, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38663292

Addressing the challenge of accurately monitoring polycyclic aromatic hydrocarbons (PAHs) in aquatic systems, this study employed diffusive gradients in thin-films (DGT) technique to achieve methods detection limits as low as 0.02 ng L-1 to 0.05 ng L-1 through in situ preconcentration and determination of time-integrated concentrations. The efficacy of the developed DGT samplers was validated under diverse environmental conditions, demonstrating independence from factors such as pH (5.03-9.01), dissolved organic matter (0-20 mg L-1), and ionic strength (0.0001-0.6 M). Notably, the introduction of a novel theoretical approach to calculate diffusion coefficients based on solvent-accessible volume tailored for PAHs significantly enhanced the method's applicability, particularly for organic pollutants with low solubility. Field deployments in coastal zones validated the DGT method against traditional grab sampling, with findings advocating a 4 to 7-day optimal deployment duration for balancing sensitivity and mitigating lag time effects. These results provide a sophisticated, efficient solution to the persistent challenge of monitoring hydrophobic organic pollutants in aquatic environments, broadening the scope and applicability of DGT in environmental science and providing a robust tool for researchers.

3.
Signal Transduct Target Ther ; 9(1): 114, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678055

Developing a mucosal vaccine against SARS-CoV-2 is critical for combatting the epidemic. Here, we investigated long-term immune responses and protection against SARS-CoV-2 for the intranasal vaccination of a triple receptor-binding domain (RBD) scaffold protein (3R-NC) adjuvanted with a flagellin protein (KFD) (3R-NC + KFDi.n). In mice, the vaccination elicited RBD-specific broad-neutralizing antibody responses in both serum and mucosal sites sustained at high level over a year. This long-lasting humoral immunity was correlated with the presence of long-lived RBD-specific IgG- and IgA-producing plasma cells, alongside the Th17 and Tfh17-biased T-cell responses driven by the KFD adjuvant. Based upon these preclinical findings, an open labeled clinical trial was conducted in individuals who had been primed with the inactivated SARS-CoV-2 (IAV) vaccine. With a favorable safety profile, the 3R-NC + KFDi.n boost elicited enduring broad-neutralizing IgG in plasma and IgA in salivary secretions. To meet the challenge of frequently emerged variants, we further designed an updated triple-RBD scaffold protein with mutated RBD combinations, which can induce adaptable antibody responses to neutralize the newly emerging variants, including JN.1. Our findings highlight the potential of the KFD-adjuvanted triple-RBD scaffold protein is a promising prototype for the development of a mucosal vaccine against SARS-CoV-2 infection.


Administration, Intranasal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Flagellin , SARS-CoV-2 , SARS-CoV-2/immunology , Humans , Flagellin/immunology , Flagellin/genetics , Flagellin/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , Animals , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Female , Antibodies, Viral/immunology , Vaccination , Male , Adult , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Immunoglobulin G/immunology , Immunoglobulin G/blood , Immunoglobulin A/immunology , Middle Aged
5.
Front Vet Sci ; 11: 1360102, 2024.
Article En | MEDLINE | ID: mdl-38444776

Transmissible gastroenteritis virus (TGEV) could cause diarrhea, vomiting, dehydration and even death in piglets, miRNA played an important role in the interaction between virus and cell. The study aimed to investigate the impact of miR-17 on the polysaccharide of Polygonum Cillinerve (PCP) in combating TGEV. miR-17 was screened and transfection validation was performed by Real-time PCR. The function of miR-17 on PK15 cells infected with TGEV and treated with PCP was investigated by DCFH-DA loading probe, JC-1 staining and Hoechst fluorescence staining. Furthermore, the effect of miR-17 on PCP inhibiting TGEV replication and apoptosis signaling pathways during PCP against TGEV infection was measured through Real-time PCR and Western blot. The results showed that miR-17 mimic and inhibitor could be transferred into PK15 cells and the expression of miR-17 significantly increased and decreased respectively compared with miR-17 mimic and inhibitor (P < 0.05). A total 250 µg/mL of PCP could inhibit cells apoptosis after transfection with miR-17. PCP (250 µg/mL and 125 µg/mL) significantly inhibited the decrease in mitochondrial membrane potential induced by TGEV after transfection with miR-17 (P < 0.05). After transfection of miR-17 mimic, PCP at concentrations of 250 µg/mL and 125 µg/mL significantly promoted the mRNA expression of P53, cyt C and caspase 9 (P < 0.05). Compared with the control group, the replication of TGEV gRNA and gene N was significantly inhibited by PCP at concentrations of 250 µg/mL and 125 µg/mL after transfection of both miR-17 mimic and inhibitor (P < 0.05). PCP at 62.5 µg/mL significantly inhibited the replication of gene S following transfection with miR-17 inhibitor (P < 0.05). These results suggested that PCP could inhibit the replication of TGEV and apoptosis induced by TGEV by regulating miR-17.

6.
mSphere ; 9(2): e0055323, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38299825

The bacteriophage is an effective adjunct to existing antibiotic therapy; however, in the course of bacteriophage therapy, host bacteria will develop resistance to bacteriophages, thus affecting the efficacy. Therefore, it is important to describe how bacteria evade bacteriophage attack and the consequences of the biological changes that accompany the development of bacteriophage resistance before the bacteriophage is applied. The specific bacteriophage vB3530 of Pseudomonas aeruginosa (P. aeruginosa) has stable biological characteristics, short incubation period, strong in vitro cleavage ability, and absence of virulence or resistance genes. Ten bacteriophage-resistant strains (TL3780-R) were induced using the secondary infection approach, and the plaque assay showed that vB3530 was less sensitive to TL3780-R. Identification of bacteriophage adsorption receptors showed that the bacterial surface polysaccharide was probably the adsorption receptor of vB3530. In contrast to the TL3780 parental strain, TL3780-R is characterized by the absence of long lipopolysaccharide chains, which may be caused by base insertion of wzy or deletion of galU. It is also intriguing to observe that, in comparison to the parent strain, the bacteriophage-resistant strains TL3780-R mostly exhibited a large cost of fitness (growth rate, biofilm formation, motility, and ability to produce enhanced pyocyanin). In addition, TL3780-R9 showed increased susceptibility to aminoglycosides and chlorhexidine, which may be connected to the loss and down-regulation of mexX expression. Consequently, these findings fully depicted the resistance mechanism of P. aeruginosa to vB3530 and the fitness cost of bacteriophage resistance, laying a foundation for further application of bacteriophage therapy.IMPORTANCEThe bacteriophage is an effective adjunct to existing antibiotic therapy; However, bacteria also develop defensive mechanisms against bacteriophage attack. Thus, there is an urgent need to deeply understand the resistance mechanism of bacteria to bacteriophages and the fitness cost of bacteriophage resistance so as to lay the foundation for subsequent application of the phage. In this study, a specific bacteriophage vB3530 of P. aeruginosa had stable biological characteristics, short incubation period, strong in vitro cleavage ability, and absence of virulence or resistance genes. In addition, we found that P. aeruginosa may lead to phage resistance due to the deletion of galU and the base insertion of wzy, involved in the synthesis of lipopolysaccharides. Simultaneously, we showed the association with the biological state of the bacteria after bacteria acquire bacteriophage resistance, which is extremely relevant to guide the future application of therapeutic bacteriophages.


Bacteriophages , Pseudomonas Infections , Humans , Bacteriophages/genetics , Pseudomonas aeruginosa , Pseudomonas Infections/therapy , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Virulence
7.
Hum Immunol ; 85(2): 110765, 2024 Mar.
Article En | MEDLINE | ID: mdl-38369442

Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.


Atherosclerosis , Animals , Humans , Immunity, Innate , Adaptive Immunity , Inflammation , Leukocytes/pathology
8.
Sci Total Environ ; 914: 169872, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38199360

Synthetic musks (SMs) have gained widespread utilization in daily consumer products, leading to their widespread dissemination in aquatic environments through various pathways. Over the past few decades, the production of SMs has consistently risen, prompting significant concern over their potential adverse impacts on ecosystems and human health. Although several studies have focused on the development of analytical techniques for detecting SMs in biological samples and cosmetic products, a comprehensive evaluation of their global distribution in diverse aquatic media and biological matrices remains lacking. This review aims to provide an up-to-date overview of the occurrence of SMs in both aquatic and various biological matrices, investigating their worldwide distribution trends, assessing their ecological toxicity, and comparing different methodologies for processing and analysis of SMs. The findings underscore the prevalence of polycyclic musks as predominant SMs, with consumption of various products in different countries leading to contrasting distribution of contaminants. Furthermore, the migration of SMs from sediments to the water phase is investigated, indicating the role of solid-phase reservoirs. Incomplete degradation of SMs in the environment could contribute to their accumulation in aquatic systems, impacting the growth and oxidative stress of aquatic organisms, and having a possibility of genotoxicity to them. Human exposure data highlight substantial risks for vulnerable populations such as pregnant women and infants. Moreover, contemporary methods for SMs analysis are presented in this review, particularly focusing on advancements made in the last five years. Finally, research enhancement and critical questions regarding the analysis of SMs are provided, offering suggestions for future research endeavors.


Cosmetics , Water Pollutants, Chemical , Pregnancy , Humans , Female , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Aquatic Organisms
9.
Eur J Nucl Med Mol Imaging ; 51(6): 1703-1712, 2024 May.
Article En | MEDLINE | ID: mdl-38191817

PURPOSE: Boramino acids are a class of amino acid biomimics that replace the carboxylate group with trifluoroborate and can achieve the 18F-labeled positron emission tomography (PET) and boron neutron capture therapy (BNCT) with identical chemical structure. METHODS: This study reports a trifluoroborate-derived boronophenylalanine (BBPA), a derived boronophenylalanine (BPA) for BNCT, as a promising PET tracer for tumor imaging. RESULTS: Competition inhibition assays in cancer cells suggested the cell accumulation of [18F]BBPA is through large neutral amino acid transporter type-1 (LAT-1). Of note, [18F]BBPA is a pan-cancer probe that shows notable tumor uptake in B16-F10 tumor-bearing mice. In the patients with gliomas and metastatic brain tumors, [18F]BBPA-PET shows good tumor uptake and notable tumor-to-normal brain ratio (T/N ratio, 18.7 ± 5.5, n = 11), higher than common amino acid PET tracers. The [18F]BBPA-PET quantitative parameters exhibited no difference in diverse contrast-enhanced status (P = 0.115-0.687) suggesting the [18F]BBPA uptake was independent from MRI contrast-enhancement. CONCLUSION: This study outlines a clinical trial with [18F]BBPA to achieve higher tumor-specific accumulation for PET, provides a potential technique for brain tumor diagnosis, and might facilitate the BNCT of brain tumors.


Brain Neoplasms , Positron-Emission Tomography , Positron-Emission Tomography/methods , Brain Neoplasms/diagnostic imaging , Animals , Humans , Mice , Cell Line, Tumor , Male , Female , Boron Compounds/pharmacokinetics , Middle Aged , Radioactive Tracers , Adult , Aged , Large Neutral Amino Acid-Transporter 1/metabolism , Radiopharmaceuticals/pharmacokinetics
10.
Microbiol Spectr ; 12(1): e0229523, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38032179

IMPORTANCE: Colistin is used as a last resort in many infections caused by multidrug-resistant Gram-negative bacteria; however, colistin-resistant (COL-R) is on the rise. Hence, it is critical to develop new antimicrobial strategies to overcome COL-R. We found that nitazoxanide (NTZ) combined with colistin showed notable synergetic antibacterial activity. These findings suggest that the NTZ/colistin combination may provide an effective alternative route to combat COL-R A. baumannii and COL-R Escherichia coli infections.


Acinetobacter baumannii , Colistin , Nitro Compounds , Thiazoles , Colistin/pharmacology , Antiparasitic Agents/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
11.
Ecotoxicol Environ Saf ; 270: 115901, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38157799

The toxicity of nanoparticles to freshwater microalgae is of significant importance in maintaining the overall stability of aquatic ecosystems. However, the transport mechanism and toxicity response of microalgae towards nanoplastics (NPs) remain to be further investigated. In this study, we examined the toxicity and internalization mechanisms of polystyrene nanoplastics (PS-NPs) in the microalga Chlorella sorokiniana. The results revealed that the PS-NPs inhibited algal cells' growth and disrupted cell integrity upon contact, leading to cell shrinkage or rupture. Moreover, amino-modified PS-NPs (Nano-PS-NH2) exhibited greater toxicity to C. sorokiniana than carboxyl-modified PS-NPs (Nano-PS-COOH). Furthermore, significant inhibition of PS-NPs internalization was observed when four different endocytosis-related inhibitors were used, indicating that internalized PS-NPs can enter algal cells through endocytic pathways. More importantly, C. sorokiniana exposed to Nano-PS-NH2 responded to the reduction in carbon sources and energy resulting from the suppression of photosynthesis by regulating the metabolism of carbohydrates. These findings elucidate the effects of PS-NPs on C. sorokiniana, including their impact on cell morphology and metabolism, while shedding light on the internalization mechanisms of NPs by C. sorokiniana which deepen our understanding of the toxicity of nanoplastics on algae and provide important theoretical support for solving such aquatic ecological environment problems.


Chlorella , Microalgae , Nanoparticles , Water Pollutants, Chemical , Microplastics/toxicity , Polystyrenes/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity , Nanoparticles/toxicity
12.
Vaccine ; 41(52): 7641-7646, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38016845

A third dose of inactivated virus vaccine (IVV) boosts neutralizing antibodies, reducing SARS-CoV-2 transmission rate and COVID-19 severity. However, the impact of RBD-elicited antibodies and their neutralizing activity by the boost of IVV is unknown. We investigated the impact of IVV's boost shot on RBD-elicited antibodies and their neutralizing activity in 18 subjects receiving the second and third IVV doses. Using an RBD antibodies depletion assay, we assessed the neutralizing activity of RBD-elicited antibodies. After the second dose, RBD-antigen elicitation accounted for ∼60% of neutralizing activity, which increased to 82% after the IVV boost against ancestral SARS-CoV-2. Depleting class 3 and class 4-specific antibodies with the Beta-RBD protein revealed that NAbs targeting RBD class 1 and class 2 subdomains increased from 57% to 75% post-boost. These findings highlight the significant enhancement of RBD-specific antibodies, especially against RBD class 1 and class 2, with IVV booster doses. Our study offers valuable insights for optimizing COVID-19 vaccine strategies.


COVID-19 , SARS-CoV-2 , Humans , Epitopes , Vaccines, Inactivated , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies , Antibodies, Blocking , Antibodies, Neutralizing , Antibodies, Viral
13.
ACS Sens ; 8(10): 3862-3872, 2023 10 27.
Article En | MEDLINE | ID: mdl-37752695

In this work, a new type, highly sensitive, and reusable nanoplastics (NPs) microwave detection method is proposed, which can be used to rapidly analyze NPs with different surface charges and sizes. The effective dielectric constant of NPs varies according to the different concentrations, particle sizes, and surface charges of NPs in aqueous solution. The feasibility of the microwave method for differential-charged NPs detection is verified using a complementary split ring resonator sensor manufactured on a cost-effective printed circuit board, which shows a high sensitivity only for positively charged NPs (PS-NH2) detection. To achieve microwave detection of both positively and negatively charged NPs (PS-SO3H), a microscale spiral-coupled resonator sensing chip is manufactured through integrated passive technology, which demonstrates extremely low detection limits and high sensitivity for both PS-NH2 and PS-SO3H, with different concentrations, particle sizes, and charges. In addition, for NPs solution doped with methyl orange, the device can still perform stable measurements, overcoming the inability of traditional NPs molecular element determination and optical detection methods to detect NPs aqueous solution with organic matter doping and color presence. The proposed microwave detection method could also be extended to sensing detection for detecting other hazardous environmental substances.


Microplastics , Microwaves
14.
ACS Infect Dis ; 9(10): 1858-1866, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37669401

The goal of this study was to clarify the synergistic antibacterial activity of the combination of tigecycline (TGC) and rifampicin (RIF). Additionally, the study sought to investigate the impact of this combination on the development of mutational resistance and to assess its efficacy in an in vivo model using Galleria mellonella. Through a checkerboard test, we found that the combination of TGC and RIF showed synergistic antibacterial activity against carbapenem-resistant Klebsiella pneumoniae (CRKP). The fractional inhibition concentration index (FICI) was found to be ≤0.5, confirming the potency of the combination. Additionally, this synergistic effect was further validated in vivo using the G. mellonella infection model. TGC-RIF treatment had a lower mutant prevention concentration (MPC) than that of monotherapy, indicating its potential to reduce the development of mutational resistance. We observed a substantial variation in the MPCs of TGC and RIF when they were measured at different proportions in the combinations. Furthermore, during the resistant mutant selection window (MSW) test, we noticed a correlation between strains with low FICI and low MSW. The expression of efflux-pump-related genes, namely rarA and acrB, is significantly decreased in the combination therapy group. This indicates that altered expression levels of certain efflux pump regulator genes are associated with a combined decrease in bacterial mutation resistance. In conclusion, the combination of TGC and RIF effectively suppresses antibiotic resistance selection in CRKP. This study establishes a paradigm for evaluating drug-resistant mutant suppression in antimicrobial combination therapy.

15.
Eur J Nucl Med Mol Imaging ; 50(11): 3214-3224, 2023 09.
Article En | MEDLINE | ID: mdl-37318538

PURPOSE: Fibroblast activation protein is one of the most attractive targets for tumor diagnosis and therapy. There have been many successful clinical translations with small molecules and peptides, yet only a few anti-FAP antibody diagnostic or therapeutic agents have been reported. Antibodies often feature good tumor selectivity and long tumor retention, which may be a better-match with therapeutic radionuclides (e.g.,177Lu, 225Ac) for cancer therapy. Here we report a 177Lu-labeled anti-FAP antibody, PKU525, as a therapeutic radiopharmaceutical for FAP-targeted radiotherapy. METHODS: The anti-FAP antibody is produced as a derivative of sibrotuzumab. The pharmacokinetics and blocking study are performed with 89Zr-labeled antibody by PET imaging. The conjugation strategies have been screened and tested with SPECT imaging through 177Lu-labeling. The biodistribution and radiotherapy studies are performed on 177Lu-labeled anti-FAP antibody in NU/NU mice-bearing HT-1080-FAP tumors. RESULTS: A multiple time-point PET imaging study shows that the tumor accumulation of [89Zr]Zr-DFO-PKU525 is intense, selective, and relatively rapid. The time activity curve indicates that the tumor uptake continually increases until reaches the highest uptake (SUVmax = 18.4 ± 2.3, n = 4) at 192 h, then gradually declines. Radioactivity rapidly cleared from the blood, liver, and other major organs, resulting in high tumor-to-background ratios. An in vivo blocking experiment suggests that [89Zr]Zr-DFO-PKU525 is FAP-specific and the uptake in FAP-negative tumors is almost negligible. Ex vivo biodistribution study shows that the tumor uptake of [177Lu]Lu-DOTA-NCS-PKU525 is 23.04 ± 5.11% ID/g, 33.2 ± 6.36% ID/g, 19.87 ± 6.84% ID/g and 19.02 ± 5.90% ID/g at 24 h, 96 h, 168 h, and 240 h after injection (n = 5), which is corroborated with the PET imaging. In therapeutic assays, multiple doses of [177Lu]Lu-DOTA-NCS-PKU525 have been tested in tumor-bearing mice, and the data suggests that 3.7 MBq may be sufficient to completely suppress the tumor growth in mice without showing observable side effects. CONCLUSION: A FAP-targeted antibody-radionuclide conjugate was developed and evaluated in vitro and in vivo. Its tumor accumulation is rapid and high with a clean background. It remarkably suppresses the tumors in mice while the side effect is almost negligible, showing that it is promising for further clinical translational studies.


Immunoconjugates , Neoplasms , Animals , Mice , Tissue Distribution , Radioisotopes/therapeutic use , Radioisotopes/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacokinetics , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Neoplasms/drug therapy , Immunoconjugates/therapeutic use , Fibroblasts , Cell Line, Tumor
16.
Int J Antimicrob Agents ; 62(3): 106899, 2023 Sep.
Article En | MEDLINE | ID: mdl-37354920

Colistin (COL) is considered the last line of treatment against infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB). However, the increasing number of colistin-resistant (COL-R) bacteria is a great threat to public health. In this study, a strategy of combining farnesol (FAR), which has anti-inflammatory and antitumor properties, with COL to restart COL activity was proposed. The synergistic effect of FAR combined with COL against COL-R GNB in vivo and in vitro were investigated. The excellent synergistic antibacterial activity of the COL-FAR combination was confirmed by performing the checkerboard assay, time-killing assay, and LIVE/DEAD bacterial cell viability assay. Crystal violet staining and scanning electron microscopy results showed that COL-FAR prevented biofilm formation and eradicated pre-existing mature biofilm. Cytotoxicity assay showed that FAR at 64 µg/mL was not cytotoxic to RAW264.7 cells. In vivo infection experiments showed that COL-FAR increased the survival rate of infected Galleria mellonella and decreased the bacterial load in a mouse thigh infection model. These results indicate that COL-FAR is a potentially effective therapeutic option for combating COL-R GNB infections.


Colistin , Farnesol , Animals , Mice , Colistin/pharmacology , Colistin/therapeutic use , Farnesol/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
17.
Biosensors (Basel) ; 13(5)2023 May 10.
Article En | MEDLINE | ID: mdl-37232898

Though monitoring blood glucose (BG) is indispensable for regulating diabetes, the frequent pricking of the finger by the commonly used fingertip blood collection causes discomfort and poses an infection risk. Since glucose levels in skin interstitial fluid (ISF) correlate with blood glucose levels, monitoring glucose in the skin ISF can be a viable alternative. With this rationale, the present study developed a biocompatible porous microneedle capable of rapid sampling, sensing, and glucose analysis in ISF in a minimally invasive manner, which can improve patient compliance and detection efficiency. The microneedles contain glucose oxidase (GOx) and horseradish peroxidase (HRP), and a colorimetric sensing layer containing 3,3',5,5'-tetramethylbenzidine (TMB) is on the back of the microneedles. After penetrating rat skin, porous microneedles harvest ISF rapidly and smoothly via capillary action, triggering the production of hydrogen peroxide (H2O2) from glucose. In the presence of H2O2, HRP reacts with TMB contained in the filter paper on the back of microneedles, causing an easily visible color shift. Further, a smartphone analysis of the images quickly quantifies glucose levels in the 50-400 mg/dL range using the correlation between color intensity and glucose concentration. The developed microneedle-based sensing technique with minimally invasive sampling will have great implications for point-of-care clinical diagnosis and diabetic health management.


Diabetes Mellitus , Glucose , Rats , Animals , Glucose/analysis , Blood Glucose/analysis , Extracellular Fluid/chemistry , Colorimetry/methods , Hydrogen Peroxide , Porosity , Skin/chemistry
18.
PLoS Pathog ; 19(5): e1011123, 2023 05.
Article En | MEDLINE | ID: mdl-37196033

SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.


COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Proteolysis , Virus Replication , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
19.
Virulence ; 14(1): 2214416, 2023 12.
Article En | MEDLINE | ID: mdl-37246787

Cysteiniphilum is a newly discovered genus in 2017 and is phylogenetically closely related to highly pathogenic Francisella tularensis. Recently, it has become an emerging pathogen in humans. However, the complete genome sequence of genus Cysteiniphilum is lacking, and the genomic characteristics of genetic diversity, evolutionary dynamics, and pathogenicity have not been characterized. In this study, the complete genome of the first reported clinical isolate QT6929 of genus Cysteiniphilum was sequenced, and comparative genomics analyses to Francisella genus were conducted to unveil the genomic landscape and diversity of the genus Cysteiniphilum. Our results showed that the complete genome of QT6929 consists of one 2.61 Mb chromosome and a 76,819 bp plasmid. The calculated average nucleotide identity and DNA-DNA hybridization values revealed that two clinical isolates QT6929 and JM-1 should be reclassified as two novel species in genus Cysteiniphilum. Pan-genome analysis revealed genomic diversity within the genus Cysteiniphilum and an open pan-genome state. Genomic plasticity analysis exhibited abundant mobile genetic elements including genome islands, insertion sequences, prophages, and plasmids on Cysteiniphilum genomes, which facilitated the broad exchange of genetic material between Cysteiniphilum and other genera like Francisella and Legionella. Several potential virulence genes associated with lipopolysaccharide/lipooligosaccharide, capsule, and haem biosynthesis specific to clinical isolates were predicted and might contribute to their pathogenicity in humans. Incomplete Francisella pathogenicity island was identified in most Cysteiniphilum genomes. Overall, our study provides an updated phylogenomic relationship of members of the genus Cysteiniphilum and comprehensive genomic insights into this rare emerging pathogen.


Francisella tularensis , Genome, Bacterial , Humans , Virulence/genetics , Francisella tularensis/genetics , Phylogeny , Genomics , DNA Transposable Elements , Genetic Variation
20.
Sci Total Environ ; 889: 164290, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37211121

Nitrification is an important link for environmental nitrogen cycling, the appearance of comammox updates our traditional cognition about nitrification. Yet comammox has been poorly studied in marine sediments. This study explored the differences in abundance, diversity, community structure of comammox cladeA amoA in the sediments from different offshore areas of China (the Bohai Sea (BS), the Yellow Sea (YS), and the East China Sea (ECS)) and revealed the main driving factors. The abundance of comammox cladeA amoA was 8.11 × 103-4.96 × 104, 2.85 × 104-4.18 × 104, and 5.76 × 103-4.91 × 104 copies/g dry sediment in BS, YS, and ECS, respectively. The OTU (operational taxonomic units) numbers of comammox cladeA amoA in the BS, YS, and ECS were 4, 2, and 5 respectively. There were negligible differences in the abundance and diversity of comammox cladeA amoA among the sediments of the three seas. The subclade of comammox cladeA amoA, cladeA2 is the dominant comammox flora in the offshore area sediments of China. Noticeable differences in the community structure of comammox were observed among these three seas, where the relative abundance of cladeA2 in comammox was 62.98 %, 66.24 %, and 100 % in ECS, BS, and YS respectively. pH was found as the main factor affecting the abundance of comammox cladeA amoA and showed a significant positive correlation (p < 0.05). The diversity of comammox decreased with the increase of salinity (p < 0.05). NO3--N is the main factor affecting the community structure of comammox cladeA amoA.


Archaea , Bacteria , Oxidation-Reduction , Ammonia , Phylogeny , Nitrification , China , Geologic Sediments
...